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 Newton’s laws of motion and the Schrodinger equation in quantum mechanics are not well 
suited to describe the macroscopic properties of common objects (e.g. a block of copper, a glass of 
water, etc.) at room temperature.  It is too cumbersome to use these equations to understand the 
behavior of a collection of Avagodro’s number (NA ~ 6.02 1023) of particles.  We need another approach. 

The outline of statistical mechanics is as follows: 
1)  Enumerate the quantum mechanical states of a system.  We use the results of quantum 

mechanics to find all of the “micro-states” of a system. 
2) Evaluate the statistical properties of the system.  Which states are accessible?  What is the 

average of a property (e.g. pressure, magnetization, energy, etc.) over all of the accessible 
micro-states? 

3) Determine the macroscopic thermodynamic state of the system, and understand how it 
interacts with other macroscopic systems. 

We discussed the solutions to a number of simple quantum problems.  The key concepts to take 
away from this discussion are the facts that the bound energy eigenstates of the systems are discrete – 
they are typically labeled by one or more integers, and the fact that the degeneracy or multiplicity of 
each state grows quickly with excitation number.  The systems included: 

a)  Particle of mass m in an infinite square well of width L.  1D version has energy eigenvalues 
𝐸𝐸𝑛𝑛 = 𝑛𝑛2𝜋𝜋2ℏ2/(2𝑚𝑚𝐿𝐿2), where n = 1, 2, 3, … is the quantum number.  In a 3D infinite cubical 
well of side L the energy eigenvalues are also discrete: 𝐸𝐸𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 = (𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2)𝜋𝜋2ℏ2/
(2𝑚𝑚𝐿𝐿2), where nx = 1, 2, 3, …, ny = 1, 2, 3, …, and nz = 1, 2, 3, … are the three independent 
quantum numbers. 

b) The Hydrogen atom has discrete energy eigenvalues given by 𝐸𝐸𝑛𝑛 = −𝑚𝑚𝑒𝑒4/(8ℎ2𝜀𝜀0
2𝑛𝑛2), 

where m is the electron mass, e is the electronic charge, h is Planck’s constant, ε0 is the 
permittivity of free space and n = 1, 2, 3, … is called the principal quantum number.  There 
are in fact three quantum numbers that label the solutions of the Schrodinger equation for 
the (unperturbed) Hydrogen atom: n, l and m.  Degeneracy means that two or more 
distinct quantum states (labeled by different sets of quantum numbers) have the same 
energy.  The degeneracy of the unperturbed hydrogen atom increases as g(n) = n2. 

c) A mass m on a spring with spring constant k is a harmonic oscillator.  The 1D version has 

discrete energy eigenstates with energies 𝐸𝐸𝑛𝑛 = �𝑛𝑛 + 1
2
� ℏ𝜔𝜔, where 𝜔𝜔 = �𝑘𝑘/𝑚𝑚.  The 3D 

version has discrete energy eigenvalues  𝐸𝐸𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 = (𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑦𝑦 + 𝑛𝑛𝑧𝑧 + 3/2)ℏ𝜔𝜔, where nx = 
1, 2, 3, …, ny = 1, 2, 3, …, and nz = 1, 2, 3, … are the three independent quantum numbers.  It 
can be shown that the 3D harmonic oscillator states have multiplicity or degeneracy of g(n) 
= (n+1)(n+2)/2. 

d) Consider a small circular loop of wire carrying a current 𝐼𝐼.  Such a current loop generates a 
magnetic moment 𝑚𝑚��⃗ = 𝐼𝐼𝑎⃗𝑎, where 𝑎⃗𝑎 = 𝐴𝐴𝑛𝑛� is the vector area (Griffiths Electrodynamics) and 
𝐴𝐴 is the area of the loop and 𝑛𝑛� is the unit vector normal to the plane containing the loop, 
with a direction given by the right hand rule for the sense of current flow in the loop.  If an 
external magnetic field 𝐵𝐵�⃗  is applied to the loop, a torque is exerted on the loop trying to 
align the direction of 𝑚𝑚��⃗  with 𝐵𝐵�⃗ .  This interaction can be summarized with a classical 
potential energy 𝑈𝑈 = −𝑚𝑚��⃗ ∙ 𝐵𝐵�⃗ .  The aligned configuration has the lowest (most negative) 
energy.  Classically this energy can have any value because 𝑚𝑚��⃗  can have any direction relative 
to 𝐵𝐵�⃗ .  However in the quantum mechanics of the electron there are only two possible values 



of 𝑚𝑚��⃗ ∙ 𝐵𝐵�⃗ , namely 𝑈𝑈 = +𝑚𝑚𝑒𝑒𝐵𝐵 or 𝑈𝑈 = −𝑚𝑚𝑒𝑒𝐵𝐵, where 𝑚𝑚𝑒𝑒 = 𝑒𝑒ℏ/2𝑚𝑚 is the Bohr magneton.  
This arises from a quantum mechanical property of the electron termed a “two-valuedness 
not describable classically” by Wolfgang Pauli.  The electron acts as if it has a small current 
loop and magnetic moment, and the orientation of this moment with respect to any 
magnetic field direction has only one of two possible projections, called “up” or “down” 
depending on whether its projection on 𝐵𝐵�⃗  is either positive or negative. 


